

NATIONAL ENERGY TECHNOLOGY LABORATORY

Cross-Cutting Topics

Carbon Capture Workshop – October 5-6, 2009

Crosscutting Topics

Approaches

- Combinations of technologies
- Chemical looping
- Setting targets vs. standards
- Alternative regeneration schemes

Assessment (iterative)

Issues

- Water management
- CO₂ compression
- Sequestration specs
- Contaminants
- Technology deployment planning
- Scale up
 - Ability to predict attrition of solids (e.g., sorbants, oxidants, reactants, ash)
- Environmental footprint

Methodologies

- Holistic modeling
- Computation/numerical simulation
- Characterization tools
- Sensor & controls
- Standards for comparison

Interaction Between Capture & Sequestration

- Purity of CO₂
- Pressure specs
- Intermittency

Oxy-Fuels

TRL: Pilots

Challenges (moving up):

- Corrosion on fire side; new materials
- Air in-leakage contaminants (e.g. N₂ and argon) and how to remove cost effectively
- Boiler design improvements
- Understand how to deal with complexity ("plumbing problems" and process optimization)
 - Reliability, Sizing, Transients
 - Approach: 1) Learn from existing demos; 2) dynamic simulation development and validation; 3) learn from risk/availability assessments

Challenge (in between):

Radiation model with validation (Is it significant?)

Challenges (moving down):

- Capital and operating cost reduction breakthrough in oxygen separation (beyond most advanced of today)
- Basic separations research
- Boiler design fundamental understanding
- Materials of construction
- Particle reactions under oxy-fuel conditions

Chemical Looping

TRL: Pilots to Engineering Science

Challenges (moving up):

- Lifecycle and environmental impact of oxidants
- How to implement retrofits
- Transport/solids management
- Heat management/new reactor concepts
- Sensor & controls (pilots)
- Sorbant reclamation and ash management

Challenges (moving down):

- Approaches for dealing with contaminants
- Understanding mechanism for reactions between two solid materials
- Durability of oxidants
- How to get more balanced thermodynamics
 - New processes
 - Fundamental physics of particles
 - New chemistry materials (e.g., nanostructured materials)
 - New compostitions
 - New construction materials (to combat erosion)

Computation and Characterization (Multi-scale Physics)

TRL: Across all TRLs

Challenges:

- Lack of particle scale information needed as inputs to macro-scale models
- Lack of understanding of mechanisms for capture (e.g., diffusion or adsorption in case of solid adsorbents
- Getting enough information from bench work to do economic analysis
- Developing fundamental understanding that will lead to scale-bridging models/reduced order models
- Developing scale-bridging models/reduced order models
- Improved numerical methods
- Model validation across spectrum of scales (particle, bench, pilot, commercial)
- Uncertainty quantification (e.g., inputs, boundary, external validation, data, etc.)
- Developing virtual models (to help minimize "plumbing problems")
- Better data and understanding of speciation and fate of trace elements
- Improve modeling of weak interactions for materials discovery

CO₂ Compression

TRL: System engineering (across multiple technologies)

Challenges (moving up):

- Systems study to reconcile commercial equipment supply with theoretical specs.
- Understanding different compression needs as function of technical approach to capture (e.g., membranes, absorbents, etc.)
- Understand issues with scaling up GPUs
- Lack of pilot plant data collection of gas composition and contaminants
- Lack of pilot plant data collection of condensate (water) composition

Challenges (moving down):

- Fundamental understanding of CO₂ physical properties in presence of contaminants (e.g., water and acid gas) and also solubility in brine
- Lack of transport models to understand pressure specs for output CO₂
- Materials corrosion/compatibility issues

Alternatives to Sequestration (CO₂ as Feedstock)

TRL: Basic science

Challenges:

- What are options? Fundamental scientific inquiry into options
- Determine ways to independently tune thermodynamics and kinetics of any CO₂ reaction
- Investigate chemistry that is separate from acid-based chemistry)
- Investigate biological approaches
- Chemistry needs to scale with the problem
 - Mineralization, building materials, fuel, chemicals*
 - * Higher value chemicals may be pathway to innovation, but they are not solution

Speciation and Fate of Trace Elements

TRL: Across all TRLs

Challenges

- Modeling
- What are mechanisms?
- Experimental measurements
- Sensing and detection
- Quantifying environmental impact
- Impact on carbon capture

Scale Up and Technology Development

TRL: Across all TRLs

Challenges

- Can high performance computing/modeling/simulation be used to accelerate scale up?
- What algorithms are needed?
- Can we find a better way to integrate tools?
- How can we remedy lack of computer access, lack of funding?
- How do we use computations to develop better models and necessary data?
- What are gaps in capabilities from the user's perspective?
- Can we catalogue where modeling is used today for scale up?

Note: Perhaps more of an FE pull than a SC push

Alternative Regeneration Schemes

TRL: Across lower half of TRLs

Challenges

- Develop Co2 release processes with more efficiency than temperature/pressure swing
 - Chemical reactions (reduction)
 - Electrolytic stripping
 - Mineralization
 - Phase change
- Develop standard comparison of energy consumption and cost

New Agenda Item: Communication

DOE needs to develop mechanisms to facilitate dialogue and knowledge sharing up and down the TRL ladder. Find ways to build a broader and more cohesive carbon capture community, including sub-communities. Example: Sandia combustion labs (partially due to physical proximity)

Possible drivers:

- Additional funding
- Focused conferences
- Invited publications
- Make a dissemination plan a requirement
- Communicate lessons-learned "down the ladder"
- Funding structured to promote project manager "matchmaking" between basic and applied R&D teams
- Grad student fellowships/internships
- Encourage links between basic and applied w/o discourageing "discovery" R&D by basic
- Need mechanism for "plucking out" basic science ideas for move to applied side